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Abstract

In this paper, the interconnections of completely prime, 3-prime and equiprime
ideals are considered in right permutable, left permutable and medial near-rings.
Some results for right self distributivity, left self distributivity and insertion
factors in near-rings are given.

1. Introduction

Throughout this paper, all near-rings are right near-rings. This paper
considers primeness in near-rings with the multiplicative semi-group

satisfying one of the following identities:

a. abc = acb (right permutable near-rings)
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b. abc = bac (left permutable near-rings)
c. abed = acbd (medial near-rings).

Birkenmeier and Heatherly [6] called these “the three identities”. They
developed a theory of rings satisfying the three identities [5]. A perusal of
the near-ring literature reveals many types of near-rings which satisfy
one of the three identities. Pilz [12] used the phrase “weakly
commutative” for “right permutability” in near-rings. Near-rings which
are both right permutable and left permutable are called permutable.

Also playing a role in this paper are the identities:
d. abc = acbe (right self-distributive (RSD))
e. abc = abac (left self-distributive (LSD)).

Kepka [11] investigated semi-groups which are LSD and Birkenmeier et
al. [3] studied LSD rings.

An ideal I of a near-ring N is called a completely prime ideal of N if
whenever ab € I, then a € I or b € I. The study of completely prime
ideals in near-rings goes back at least to [13], where such an ideal is
called a “prime ideal of type 2”. The ideal I is said to be completely semi-
prime if a? el implies a¢ € I. In [13] Ramakotaiah and Rao defined the
concept of a prime ideal of type 1. An ideal I of N (I < N) is prime of
type 1 if for all x, y € NxNy < I implies x € I or y € I. Groenewald
[8] used the phrase “3-prime ideal” for “prime ideal of type 1”. An ideal I
is a 3-semiprime ideal if whenever xNx < I, then x € I. Booth et al. [7]
gave another generalization of prime rings which they called
equiprimeness. P < N is called equiprime if a, x, y € N anx —any € P
for all n € N implies a € P or x — y € P. If P1is equiprime, then it is 3-

prime. If the zero ideal of N is 3-prime (resp. completely prime,
equiprime), then we say N is a 3-prime (resp., completely prime,

equiprime) near-ring.

Birkenmeier and Heatherly [4] showed that 3-prime (3-semiprime)
ideals in an LSD or RSD near-ring are also completely prime
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(completely semi-prime). In [6], these authors proved that 3-prime ideals

in a medial near-ring are also completely prime.

The main aim of this paper is to find the conditions which satisfy 3-
primeness implies equiprimeness in near-rings with the identities

a, b, c,d and e.

For all undefined terms in near-rings, the reader may refer to Pilz
[12].

2. Primeness in Near-Rings with Multiplicative Semi-Group
Satisfying “The Three Identities”

In general, completely primeness doesn't imply equiprimeness. For

example, if (N, +) is any cyclic group of prime order p(p > 2), define
ab=a if b#0 and ab =0 if b =0, then N is a near-ring which is
completely prime but not equiprime [7].

For a near-ring N, the distributive part of N is the set {d € N : d
is distributive} and denoted by N.

Lemma 2.1. Let N be near-ring and P < N. Then NyP c P.

Proof. Let ny € Nj. Then nz;0=n4(0+0)=ny0+n40, ie., ny0=0.

Since P <« N, ngp = ng(p + 0) —ny0 € P for every p € P.

Proposition 2.2. Let N be a right permutable near-ring and P < N.
Then P is 3-prime if and only if P is completely prime.

Proof. Note that for any near-ring a completely prime ideal is a 3-

prime ideal. Assume N is right permutable, xy € P and P is a 3-prime

ideal. Then xyN2 = xNyN < P. Now either x e P or yN c P. If
yN < P, then yNy < P. Hence y € P. Thus P is completely prime.

Theorem 2.3. Let N be a right permutable near-ring and let P < N
be such that Ny \ P = 0. If P is a completely prime ideal, then P is

equiprime.
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Proof. Suppose that for a, x, y € N, anx —any € P for every
n e N. Since N is right permutable, then anx — any = axn — ayn = (ax
—-ay)n € P. Then ax —ay € P or n € P, since P is completely prime. If
n e P, then N = P, which is a contradiction of choice of P because
Ng\P =0 and Ng\ P c N. Hence ax —ay € P. By Lemma 2.1. for
an ng € Ny \ P, ng(ax — ay) = ngax —ngay € P. Since N is right
permutable, ngax — ngay = ngxa — ngya = ng(x — y)a € P. Then ng(x
-y) e P or a € P, since P is completely prime. Since ny; ¢ P, x —y € P

or a € P. Therefore P is an equiprime ideal of V.

Corollary 2.4. Let N be a right permutable near-ring and let P < N
be such that Ng \ P # 0. Then P is 3-prime if and only if P is equiprime.

Proof. Since every equiprime ideal is also 3-prime, the proof is seen

from Proposition 2.2 and Theorem 2.3.
Theorem 2.3. is illustrated by the following example:

Example (cf. [1]). Let the additive group (Zg, +). Under a
multiplication given in the following table, (Zg, +, -) is a right

permutable near-ring. We say N = (Zg, +, - ).

[© NG N =)

w o w o w o |o
O R W N = O |-
= N W s Ol O N
W O w O w o |w
Uk W N = O
= N W R Ot O | ot

Let P =1{0,3}. Then P is an ideal of N and 4 € N; \ P, ie,
N4y \ P # 0. Then N and P satisfy the conditions of Theorem 2.3. It is

seen that P is completely prime and equiprime.
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Proposition 2.5. Let N be a left permutable near-ring and P < N be
such that NP c P(orP? = P). Then P is 3-prime if and only if P is

completely prime.

Proof. Assume N is left permutable, xy € P and P is a 3-prime ideal
such that NP < P. Then Nxy = xNy < P. Thus P is completely prime
s P? = P, then for every n € N and for every p € P, np = np;ps =
pinpy € P, ie., NP c P).

Theorem 2.6. Let N be a left permutable near-ring and let P be a
proper ideal of N. If P is completely prime, then it is equiprime.

Proof. For a, x, y € N, assume anx —any € P for all n € N. Since
N is left permutable, then nax —nay e P. Let g e N - P. Then
(nax — nay)q = naxq — nayq = nxaq — nyaq = (nx — ny)aq € P. Since N
is completely prime and ¢ ¢ P, then (nx —ny)a € P. Now either
nx—-nyeP or aeP. If nx —nye P, then (nx - ny)g = nxq — nyq =
xnq — ynq = (x — y)nq € P. Then (x — y)Nq < P. Since P is also 3-prime
and g ¢ P, then x — y € P. Thus Pis equiprime.

Corollary 2.7. Let N be a left permutable near-ring and let P be a
proper ideal of N such that NP c P(orP2 = P). Then P is 3-prime if

and only if Pis equiprime.
Proof. It is seen from Proposition 2.5 and Theorem 2.6.

Proposition 2.8. Let N be a permutable near-ring and P < N. Then
P is 3-prime if and only if P is equiprime.

Proof. For a, x, y € N, assume anx —any € P for all n € N. Since
N 1s permutable, then anx —any = axn —ayn = xan — yan = xna —
yna = (x — yJna € P.So (x — y)Na < P. Then either x-ye P or

a € P. Thus P is equiprime, the converse is straightforward.
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Proposition 2.9 ([6, Proposition 2.7]). Let N be a medial near-ring
and P <« N. Then P is 3-prime if and only if P is completely prime.

Theorem 2.10. Let N be a medial near-ring and P < N be such that
Ny \ P = 0. If Pis completely prime, then it is equiprime.

Proof. For a e N-P,x, y e N, assume anx —any € P for all
ne N. Let ngj e Ny — P. Since N is medial and NjP < P by Lemma
2.1, then nganx — ngany = ngnax — ngnay € P. Then, ngnaxng -
ngnayng = nghxang — ngnyang = (ngnx — ngny)ang € P. Since P 1is
completely prime and any ¢ P, then ngnx — ngny € P. Then ngnxng —
ngnyng = ngxnng — ngynng = ng(x — yJang € P. Then ng(x — y) Nny
c P. Since P is completely prime and ng ¢ P, then x -y e P.
Therefore P is equiprime.

Corollary 2.11. Let N be a medial near-ring and P <« N be such that
Ny \ P # 0. Then P is 3-prime if and only if P is equiprime.

Proof. The proof is seen from Propositin 2.9 and Theorem 2.10.

B;(N) will denote the intersections of all i-prime ideals of N for
i =3, e = equi, ¢ = completely. For more details on the prime radicals
B;(NV), the following papers: [2] and [9] are recommended. We have the

following:

Corollary 2.12. Let N be a zero-symmetric near-ring. If B.(N) is a
0-prime ideal of N, then

(a) If N is a right permutable (or medial) near-ring and there exists a
completely prime ideal P of N such that Ny \ P # 0, then B,(N) < B,

(N) = B3(N).

(b) If N is a left permutable near-ring and N # P is a completely
prime ideal of N, then B,(N) < B.(IN) = B3(NV).

(c) If N is a permutable near-ring, then B,(N) = B.(IN) = B3(N).
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Proof. (a) It is easily seen that B.(IN) is a completely semi-prime
ideal of N. Under assumptions B.(IN) is a O-prime ideal of N, then B.(NV)

1s a completely prime ideal of N from [9]. Since P is a completely prime
ideal of N such that Ny \ P # 0 and B.(N) c P, then Ng \ B.(IN) = 0.

Hence B.(IN) is an equiprime ideal of N from Theorem 2.3 (for medial,
from Theorem 2.10). Therefore B,(N) < B.(N).B.(N) = B3(IN) comes

from Proposition 2.2 (for medial, from Proposition 2.9).

(b) B.(N) is a completely prime ideal of N by the proof of (a). Since
N = P is a completely prime ideal of N and B.(N)c P, then
B.(N)# N. Hence B.(N) is an equiprime ideal of N from Theorem 2.6,
ie., Bo(N)< B.(N). Since N is a zero-symmetric near-ring, then

NB.(N) < B.(IN). Therefore B.(N) = B3(IN) by Proposition 2.5.

(c) B.(NV) is a completely prime ideal of N by the proof of (a). Hence

the result follows from Proposition 2.8.
3. Insertion Factors, LSD and RSD Near-Rings

In a near-ring N, an element x € N is called an insertion factor in NV

if for every a, b € N ab = axb. Throughout this section, Z denotes the

set of all insertion factors in N. Every constant near-ring is an example of
Z = N.

If n € N, the annihilatorof nis (0: n) = {x € N : xn = 0}.
Lemma 3.1. Let N be a near-ring.

(i) If (0 : n) = 0 for all nin an RSD near-ring N, then T = N.
(ii) If T = N, then N is both RSD and LSD.

(iii) If Nis RSD, then N has strong IFP property [4, Lemma 2.8].
(iv) If Nis RSD and simple, then 7 = N.

(v) If Nis RSD and simple, then N is LSD.



144 A. 0. ATAGUN and N. J. GROENEWALD

(vi) Let T =N and P <« N. Then P is 3-prime if and only if P is
completely prime.

Proof. (i) Assume N is RSD and for every n € N(0 : n) = 0. Then
for every a, b, x € N, abx = axbx. Then ab - axb € (0: x) = 0. Hence

Z =N.

(ii) Suppose that Z = N. Then for every a, b, c e N ab = ach.
Hence abc = acbe, i.e., Nis RSD. Similarly Nis LSD.

(iv) If N is RSD and simple, then either (0: n)=0 or (0: n)= N
for all n € N as a result of (iii). If for all n € N(0 : n) = 0, Z = N by (i).
If for all ne N(O:n)=N, then ab=0=anb for all a, b, ne N.
Hence 7 = N.

(v) From (iv) and (i1).

(vi) Assume Z = N, xy € P and Pis a 3-prime ideal. Then xy = xny
e P for every n € N. So xNy ¢ P. Thus P is completely prime. The
converse 1s straightforward.

Theorem 3.2. Let 7 =N and P an ideal of N such that
Ny \ P # 0.Then P is 3-prime if and only if P is equiprime.

Proof. Assume P is a completely prime ideal of N and for ¢ € N —

P, x,ye Nanx—any € P for every ne N. Since NyP c P by
Lemma 2.1., then for n; € N; — P nganx — ngany € P. Since P < N,
nganxng — nganyng € P. Since 7 = N, then nganxng —nganyng =
ngxanxng — ngyanyng € P. By Lemma 3.1 (i), N is LSD, then
x(an)xng = x(an)ng and y(an)yng = ylan)ng. Then nganxng — ngany
ng = ngxanxng — ngyanyng = ngxanng — nganng = ng(x — y)anng € P.

So ng(x — y)aNny < P. Since P is completely prime and a, ng ¢ P, then
x —y € P. Thus P is equiprime. The remain of the proof is seen from

Lemma 3.1 (vi).
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