PRIMENESS IN NEAR-RINGS WITH MULTIPLICATIVE SEMI-GROUP SATISFYING 'THE THREE IDENTITIES'

A. O. ATAGÜN and N. J. GROENEWALD

Department of Mathematics Bozok University 66100, Yozgat Turkey e-mail: aosman.atagun@bozok.edu.tr

Department of Mathematics University of Porth Elizabeth 6000 South Africa

Abstract

In this paper, the interconnections of completely prime, 3-prime and equiprime ideals are considered in right permutable, left permutable and medial near-rings. Some results for right self distributivity, left self distributivity and insertion factors in near-rings are given.

1. Introduction

Throughout this paper, all near-rings are right near-rings. This paper considers primeness in near-rings with the multiplicative semi-group satisfying one of the following identities:

Keywords and phrases: near-ring, 3-prime, equiprime, completely prime, permutability.

Received December 23, 2008

© 2009 Scientific Advances Publishers

a. *abc* = *acb* (right permutable near-rings)

²⁰⁰⁰ Mathematics Subject Classification: 16Y30.

b. abc = bac (left permutable near-rings)

c. abcd = acbd (medial near-rings).

Birkenmeier and Heatherly [6] called these "the three identities". They developed a theory of rings satisfying the three identities [5]. A perusal of the near-ring literature reveals many types of near-rings which satisfy one of the three identities. Pilz [12] used the phrase "weakly commutative" for "right permutability" in near-rings. Near-rings which are both right permutable and left permutable are called permutable. Also playing a role in this paper are the identities:

- d. *abc* = *acbc* (right self-distributive (RSD))
- e. abc = abac (left self-distributive (LSD)).

Kepka [11] investigated semi-groups which are LSD and Birkenmeier et al. [3] studied LSD rings.

An ideal I of a near-ring N is called a completely prime ideal of N if whenever $ab \in I$, then $a \in I$ or $b \in I$. The study of completely prime ideals in near-rings goes back at least to [13], where such an ideal is called a "prime ideal of type 2". The ideal I is said to be completely semiprime if $a^2 \in I$ implies $a \in I$. In [13] Ramakotaiah and Rao defined the concept of a prime ideal of type 1. An ideal I of $N(I \triangleleft N)$ is prime of type 1 if for all $x, y \in N xNy \subseteq I$ implies $x \in I$ or $y \in I$. Groenewald [8] used the phrase "3-prime ideal" for "prime ideal of type 1". An ideal Iis a 3-semiprime ideal if whenever $xNx \subseteq I$, then $x \in I$. Booth et al. [7] gave another generalization of prime rings which they called equiprimeness. $P \triangleleft N$ is called equiprime if $a, x, y \in N anx - any \in P$ for all $n \in N$ implies $a \in P$ or $x - y \in P$. If P is equiprime, then it is 3prime. If the zero ideal of N is 3-prime (resp. completely prime, equiprime), then we say N is a 3-prime (resp., completely prime, equiprime) near-ring.

Birkenmeier and Heatherly [4] showed that 3-prime (3-semiprime) ideals in an LSD or RSD near-ring are also completely prime

138

(completely semi-prime). In [6], these authors proved that 3-prime ideals in a medial near-ring are also completely prime.

The main aim of this paper is to find the conditions which satisfy 3primeness implies equiprimeness in near-rings with the identities a, b, c, d and e.

For all undefined terms in near-rings, the reader may refer to Pilz [12].

2. Primeness in Near-Rings with Multiplicative Semi-Group Satisfying "The Three Identities"

In general, completely primeness doesn't imply equiprimeness. For example, if (N, +) is any cyclic group of prime order p(p > 2), define ab = a if $b \neq 0$ and ab = 0 if b = 0, then N is a near-ring which is completely prime but not equiprime [7].

For a near-ring N, the distributive part of N is the set $\{d \in N : d$ is distributive $\}$ and denoted by N_d .

Lemma 2.1. Let N be near-ring and $P \triangleleft N$. Then $N_d P \subseteq P$.

Proof. Let $n_d \in N_d$. Then $n_d 0 = n_d (0+0) = n_d 0 + n_d 0$, i.e., $n_d 0 = 0$. Since $P \triangleleft N$, $n_d p = n_d (p+0) - n_d 0 \in P$ for every $p \in P$.

Proposition 2.2. Let N be a right permutable near-ring and $P \triangleleft N$. Then P is 3-prime if and only if P is completely prime.

Proof. Note that for any near-ring a completely prime ideal is a 3prime ideal. Assume N is right permutable, $xy \in P$ and P is a 3-prime ideal. Then $xyN^2 = xNyN \subseteq P$. Now either $x \in P$ or $yN \subseteq P$. If $yN \subseteq P$, then $yNy \subseteq P$. Hence $y \in P$. Thus P is completely prime.

Theorem 2.3. Let N be a right permutable near-ring and let $P \triangleleft N$ be such that $N_d \setminus P \neq \emptyset$. If P is a completely prime ideal, then P is equiprime.

Proof. Suppose that for $a, x, y \in N$, $anx - any \in P$ for every $n \in N$. Since N is right permutable, then $anx - any = axn - ayn = (ax -ay)n \in P$. Then $ax - ay \in P$ or $n \in P$, since P is completely prime. If $n \in P$, then N = P, which is a contradiction of choice of P because $N_d \setminus P \neq \emptyset$ and $N_d \setminus P \subseteq N$. Hence $ax - ay \in P$. By Lemma 2.1. for an $n_d \in N_d \setminus P$, $n_d(ax - ay) = n_dax - n_day \in P$. Since N is right permutable, $n_dax - n_day = n_dxa - n_dya = n_d(x - y)a \in P$. Then $n_d(x - y) \in P$ or $a \in P$, since P is completely prime. Since $n_d \notin P, x - y \in P$ or $a \in P$. Therefore P is an equiprime ideal of N.

Corollary 2.4. Let N be a right permutable near-ring and let $P \triangleleft N$ be such that $N_d \setminus P \neq \emptyset$. Then P is 3-prime if and only if P is equiprime.

Proof. Since every equiprime ideal is also 3-prime, the proof is seen from Proposition 2.2 and Theorem 2.3.

Theorem 2.3. is illustrated by the following example:

Example (cf. [1]). Let the additive group $(\mathbb{Z}_6, +)$. Under a multiplication given in the following table, $(\mathbb{Z}_6, +, \cdot)$ is a right permutable near-ring. We say $N = (\mathbb{Z}_6, +, \cdot)$.

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	3	1	5	3	1	5
2	0	2	4	0	2	4
3	3	3	3	3	3	3
4	0	4	2	0	4	2
0 1 2 3 4 5	3	5	1	3	5	1

Let $P = \{0, 3\}$. Then P is an ideal of N and $4 \in N_d \setminus P$, i.e., $N_d \setminus P \neq \emptyset$. Then N and P satisfy the conditions of Theorem 2.3. It is seen that P is completely prime and equiprime. **Proposition 2.5.** Let N be a left permutable near-ring and $P \triangleleft N$ be such that $NP \subseteq P(orP^2 = P)$. Then P is 3-prime if and only if P is completely prime.

Proof. Assume N is left permutable, $xy \in P$ and P is a 3-prime ideal such that $NP \subseteq P$. Then $Nxy = xNy \subseteq P$. Thus P is completely prime (If $P^2 = P$, then for every $n \in N$ and for every $p \in P$, $np = np_1p_2 = p_1np_2 \in P$, i.e., $NP \subseteq P$).

Theorem 2.6. Let N be a left permutable near-ring and let P be a proper ideal of N. If P is completely prime, then it is equiprime.

Proof. For $a, x, y \in N$, assume $anx - any \in P$ for all $n \in N$. Since N is left permutable, then $nax - nay \in P$. Let $q \in N - P$. Then $(nax - nay)q = naxq - nayq = nxaq - nyaq = (nx - ny)aq \in P$. Since N is completely prime and $q \notin P$, then $(nx - ny)a \in P$. Now either $nx - ny \in P$ or $a \in P$. If $nx - ny \in P$, then $(nx - ny)q = nxq - nyq = xnq - ynq = (x - y)nq \in P$. Then $(x - y)Nq \subseteq P$. Since P is also 3-prime and $q \notin P$, then $x - y \in P$. Thus P is equiprime.

Corollary 2.7. Let N be a left permutable near-ring and let P be a proper ideal of N such that $NP \subseteq P(orP^2 = P)$. Then P is 3-prime if and only if P is equiprime.

Proof. It is seen from Proposition 2.5 and Theorem 2.6.

Proposition 2.8. Let N be a permutable near-ring and $P \triangleleft N$. Then P is 3-prime if and only if P is equiprime.

Proof. For $a, x, y \in N$, assume $anx - any \in P$ for all $n \in N$. Since N is permutable, then $anx - any = axn - ayn = xan - yan = xna - yna = (x - y)na \in P$. So $(x - y)Na \subseteq P$. Then either $x - y \in P$ or $a \in P$. Thus P is equiprime, the converse is straightforward.

Proposition 2.9 ([6, Proposition 2.7]). Let N be a medial near-ring and $P \triangleleft N$. Then P is 3-prime if and only if P is completely prime.

Theorem 2.10. Let N be a medial near-ring and $P \triangleleft N$ be such that $N_d \setminus P \neq \emptyset$. If P is completely prime, then it is equiprime.

Proof. For $a \in N - P$, $x, y \in N$, assume $anx - any \in P$ for all $n \in N$. Let $n_d \in N_d - P$. Since N is medial and $N_dP \subseteq P$ by Lemma 2.1, then $n_danx - n_dany = n_dnax - n_dnay \in P$. Then, $n_dnaxn_d - n_dnayn_d = n_dnxan_d - n_dnyan_d = (n_dnx - n_dny)an_d \in P$. Since P is completely prime and $an_d \notin P$, then $n_dnx - n_dny \in P$. Then $n_dnxn_d - n_dnyn_d = n_dxnn_d - n_dynn_d = n_d(x - y)nn_d \in P$. Then $n_d(x - y) Nn_d \subseteq P$. Since P is completely prime and $n_d \notin P$, then $x - y \in P$. Therefore P is equiprime.

Corollary 2.11. Let N be a medial near-ring and $P \triangleleft N$ be such that $N_d \setminus P \neq \emptyset$. Then P is 3-prime if and only if P is equiprime.

Proof. The proof is seen from Propositin 2.9 and Theorem 2.10.

 $\beta_i(N)$ will denote the intersections of all *i*-prime ideals of N for i = 3, e = equi, c = completely. For more details on the prime radicals $\beta_i(N)$, the following papers: [2] and [9] are recommended. We have the following:

Corollary 2.12. Let N be a zero-symmetric near-ring. If $\beta_c(N)$ is a 0-prime ideal of N, then

(a) If N is a right permutable (or medial) near-ring and there exists a completely prime ideal P of N such that $N_d \setminus P \neq \emptyset$, then $\beta_e(N) \subseteq \beta_c$ (N) = $\beta_3(N)$.

(b) If N is a left permutable near-ring and $N \neq P$ is a completely prime ideal of N, then $\beta_e(N) \subseteq \beta_c(N) = \beta_3(N)$.

(c) If N is a permutable near-ring, then $\beta_e(N) = \beta_c(N) = \beta_3(N)$.

Proof. (a) It is easily seen that $\beta_c(N)$ is a completely semi-prime ideal of N. Under assumptions $\beta_c(N)$ is a 0-prime ideal of N, then $\beta_c(N)$ is a completely prime ideal of N from [9]. Since P is a completely prime ideal of N such that $N_d \setminus P \neq \emptyset$ and $\beta_c(N) \subseteq P$, then $N_d \setminus \beta_c(N) \neq \emptyset$. Hence $\beta_c(N)$ is an equiprime ideal of N from Theorem 2.3 (for medial, from Theorem 2.10). Therefore $\beta_e(N) \subseteq \beta_c(N)$. $\beta_c(N) = \beta_3(N)$ comes from Proposition 2.2 (for medial, from Proposition 2.9).

(b) $\beta_c(N)$ is a completely prime ideal of N by the proof of (a). Since $N \neq P$ is a completely prime ideal of N and $\beta_c(N) \subseteq P$, then $\beta_c(N) \neq N$. Hence $\beta_c(N)$ is an equiprime ideal of N from Theorem 2.6, i.e., $\beta_e(N) \subseteq \beta_c(N)$. Since N is a zero-symmetric near-ring, then $N\beta_c(N) \subseteq \beta_c(N)$. Therefore $\beta_c(N) = \beta_3(N)$ by Proposition 2.5.

(c) $\beta_c(N)$ is a completely prime ideal of N by the proof of (a). Hence the result follows from Proposition 2.8.

3. Insertion Factors, LSD and RSD Near-Rings

In a near-ring N, an element $x \in N$ is called an insertion factor in N if for every $a, b \in N$ ab = axb. Throughout this section, \mathcal{I} denotes the set of all insertion factors in N. Every constant near-ring is an example of $\mathcal{I} = N$.

If $n \in N$, the annihilator of n is $(0:n) = \{x \in N : xn = 0\}$.

Lemma 3.1. Let N be a near-ring.

(i) If (0:n) = 0 for all n in an RSD near-ring N, then $\mathcal{I} = N$.

(ii) If $\mathcal{I} = N$, then N is both RSD and LSD.

(iii) If N is RSD, then N has strong IFP property [4, Lemma 2.8].

(iv) If N is RSD and simple, then $\mathcal{I} = N$.

(v) If N is RSD and simple, then N is LSD.

(vi) Let $\mathcal{I} = N$ and $P \triangleleft N$. Then P is 3-prime if and only if P is completely prime.

Proof. (i) Assume N is RSD and for every $n \in N(0 : n) = 0$. Then for every $a, b, x \in N$, abx = axbx. Then $ab - axb \in (0 : x) = 0$. Hence $\mathcal{I} = N$.

(ii) Suppose that $\mathcal{I} = N$. Then for every $a, b, c \in N$ ab = acb. Hence abc = acbc, i.e., N is RSD. Similarly N is LSD.

(iv) If N is RSD and simple, then either (0:n) = 0 or (0:n) = Nfor all $n \in N$ as a result of (iii). If for all $n \in N(0:n) = 0$, $\mathcal{I} = N$ by (i). If for all $n \in N(0:n) = N$, then ab = 0 = anb for all $a, b, n \in N$. Hence $\mathcal{I} = N$.

(v) From (iv) and (ii).

(vi) Assume $\mathcal{I} = N$, $xy \in P$ and P is a 3-prime ideal. Then $xy = xny \in P$ for every $n \in N$. So $xNy \subseteq P$. Thus P is completely prime. The converse is straightforward.

Theorem 3.2. Let $\mathcal{I} = N$ and P an ideal of N such that $N_d \setminus P \neq \emptyset$. Then P is 3-prime if and only if P is equiprime.

Proof. Assume *P* is a completely prime ideal of *N* and for $a \in N - P$, $x, y \in N$ an $x - any \in P$ for every $n \in N$. Since $N_dP \subseteq P$ by Lemma 2.1., then for $n_d \in N_d - P$ $n_danx - n_dany \in P$. Since $P \triangleleft N$, $n_danxn_d - n_danyn_d \in P$. Since $\mathcal{I} = N$, then $n_danxn_d - n_danyn_d = n_dxanxn_d - n_dyanyn_d \in P$. By Lemma 3.1 (ii), *N* is LSD, then $x(an)xn_d = x(an)n_d$ and $y(an)yn_d = y(an)n_d$. Then $n_danxn_d - n_danyn_d \in P$. So $n_d(x - y)aNn_d \subseteq P$. Since *P* is completely prime and $a, n_d \notin P$, then $x - y \in P$. Thus *P* is equiprime. The remain of the proof is seen from Lemma 3.1 (vi).

References

- A. O. Atagün, E. Aygün and H. Altandiş, S-special near-rings, J. Inst. Math. Comp. Sci. (Math. Ser.) 19 (2006), 205-210.
- [2] G. Birkenmeier, H. Heatherly and E. Lee, Prime ideals and prime radicals in nearrings, Mh. Math. 117 (1994), 179-197.
- [3] G. Birkenmeier, H. Heatherly and T. Kepka, Rings with left self distributive multiplication, Acta Math. Hungar. 60 (1992), 107-114.
- [4] G. Birkenmeier and H. Heatherly, Left self distributive near-rings, J. Austral. Math. Soc. (Series A) 49 (1990), 273-296.
- [5] G. Birkenmeier and H. Heatherly, Medial rings and associated radical, Czechoslovak Math. J. 40 (1990), 258-283.
- [6] G. Birkenmeier and H. Heatherly, Medial near-rings, Mh. Math. 107 (1989), 89-110.
- [7] G. L. Booth, N. J. Groenewald and S. Veldsman, A Kurosh-Amitsur prime radical for near-rings, Comm. Algebra 18 (1990), 3111-3122.
- [8] N. J. Groenewald, Different prime ideals in near-rings, Comm. Algebra 10 (1991), 2667-2675.
- [9] N. J. Groenewald, The completely prime radical in near-rings, Acta Math. Hungar. 51 (1988), 301-305.
- [10] N. J. Groenewald, Different Nil Radicals for near-rings, Submitted.
- [11] T. Kepka, Varieties of left distributive semigroups, Acta Univ. Carolinae Math. et Phys. 25 (1984), 3-18.
- [12] G. Pilz, Near-Rings, North Holland, Amsterdam, 1983.
- [13] D. Ramakotaiah and G. K. Rao, On IFP near-rings, J. Austral. Math. Soc. 27 (1979), 365-370.