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Abstract 

In this paper, the interconnections of completely prime, 3-prime and equiprime 
ideals are considered in right permutable, left permutable and medial near-rings. 
Some results for right self distributivity, left self distributivity and insertion 
factors in near-rings are given. 

1. Introduction 

Throughout this paper, all near-rings are right near-rings. This paper 
considers primeness in near-rings with the multiplicative semi-group 
satisfying one of the following identities: 

a. acbabc =  (right permutable near-rings) 
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b. bacabc =  (left permutable near-rings) 

c. acbdabcd =  (medial near-rings). 

Birkenmeier and Heatherly [6] called these “the three identities”. They 
developed a theory of rings satisfying the three identities [5]. A perusal of 
the near-ring literature reveals many types of near-rings which satisfy 
one of the three identities. Pilz [12] used the phrase “weakly 
commutative” for “right permutability” in near-rings. Near-rings which 
are both right permutable and left permutable are called permutable. 
Also playing a role in this paper are the identities: 

d. acbcabc =  (right self-distributive (RSD)) 

e. abacabc =  (left self-distributive (LSD)). 

Kepka [11] investigated semi-groups which are LSD  and Birkenmeier et 
al. [3] studied LSD  rings. 

An ideal I of a near-ring N is called a completely prime ideal of N if 
whenever ,Iab ∈  then Ia ∈  or .Ib ∈  The study of completely prime 
ideals in near-rings goes back at least to [13], where such an ideal is 
called a “prime ideal of type 2”. The ideal I is said to be completely semi-

prime if Ia ∈2  implies .Ia ∈  In [13] Ramakotaiah and Rao defined the 
concept of a prime ideal of type 1. An ideal I of ( )NIN  is prime of 

type 1 if for all IxNyNyx ⊆∈,  implies Ix ∈  or .Iy ∈  Groenewald 

[8] used the phrase “3-prime ideal” for “prime ideal of type 1”. An ideal I 
is a 3-semiprime ideal if whenever ,IxNx ⊆  then .Ix ∈  Booth et al. [7] 
gave another generalization of prime rings which they called 
equiprimeness. NP  is called equiprime if PanyanxNyxa ∈−∈,,  

for all Nn ∈  implies Pa ∈  or .Pyx ∈−  If P is equiprime, then it is 3-
prime. If the zero ideal of N is 3-prime (resp. completely prime, 
equiprime), then we say N is a 3-prime (resp.,  completely prime, 
equiprime) near-ring. 

Birkenmeier and Heatherly [4] showed that 3-prime (3-semiprime) 
ideals in an LSD  or RSD  near-ring are also completely prime 
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(completely semi-prime). In [6], these authors proved that 3-prime ideals 
in a medial near-ring are also completely prime. 

The main aim of this paper is to find the conditions which satisfy 3- 
primeness implies equiprimeness in near-rings with the identities 

dcba ,,,  and e. 

For all undefined terms in near-rings, the reader may refer to Pilz 
[12]. 

2. Primeness in Near-Rings with Multiplicative Semi-Group 
Satisfying “The Three Identities” 

In general, completely primeness doesn't imply equiprimeness. For 
example, if ( )+,N  is any cyclic group of prime order ( ),2>pp  define 

aab =  if 0≠b  and 0=ab  if ,0=b  then N is a near-ring which is 
completely prime but not equiprime [7]. 

For a near-ring N, the distributive part of N is the set { dNd :∈  

}vedistributiis  and denoted by .dN  

Lemma 2.1. Let N be near-ring and .NP  Then .PPNd ⊆  

Proof. Let .dd Nn ∈  Then ( ) ,00000 dddd nnnn +=+=  i.e.,  .00 =dn  

Since ( ) PnpnpnNP ddd ∈−+= 00,  for every .Pp ∈  

Proposition 2.2. Let N be a right permutable near-ring and .NP  
Then P is 3-prime if and only if P is completely prime. 

Proof. Note that for any near-ring a completely prime ideal is a 3-
prime ideal. Assume N is right permutable, Pxy ∈  and P is a 3-prime 

ideal. Then .2 PxNyNxyN ⊆=  Now either Px ∈  or .PyN ⊆  If 
,PyN ⊆  then .PyNy ⊆  Hence .Py ∈  Thus P is completely prime. 

Theorem 2.3. Let N be a right permutable near-ring and let NP  
be such that .0\ /≠PNd  If P is a completely prime ideal, then P is 

equiprime. 
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Proof. Suppose that for PanyanxNyxa ∈−∈ ,,,  for every 

.Nn ∈  Since N is right permutable, then (axaynaxnanyanx =−=−  

) .Pnay ∈−  Then Payax ∈−  or ,Pn ∈  since P is completely prime. If 

,Pn ∈  then ,PN =  which is a contradiction of choice of P because 
0\ /≠PNd  and .\ NPNd ⊆  Hence .Payax ∈−  By Lemma 2.1. for 

an ( ) .,\ PaynaxnayaxnPNn ddddd ∈−=−∈  Since N is right 

permutable, ( ) .Payxnyanxanaynaxn ddddd ∈−=−=−  Then (xnd  

) Py ∈−  or ,Pa ∈  since P is completely prime. Since −∈/ xPnd , ∈y P  

or .Pa ∈  Therefore P is an equiprime ideal of N. 

Corollary 2.4. Let N be a right permutable near-ring and let NP  
be such that .0\ /≠PNd  Then P is 3-prime if and only if P is equiprime. 

Proof. Since every equiprime ideal is also 3-prime, the proof is seen 
from Proposition 2.2 and Theorem 2.3.  

Theorem 2.3. is illustrated by the following example: 

Example (cf. [1]). Let the additive group ( ).,6 +Z  Under a 

multiplication given in the following table, ( )⋅+,,6Z  is a right 

permutable near-ring. We say ( ).,,6 ⋅+= ZN   

. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 3 1 5 3 1 5 

2 0 2 4 0 2 4 

3 3 3 3 3 3 3 

4 0 4 2 0 4 2 

5 3 5 1 3 5 1 

Let { }.3,0=P  Then P is an ideal of N and ,\4 PNd∈  i.e., 

.0\ /≠PNd  Then N and P satisfy the conditions of Theorem 2.3. It is 

seen that P is completely prime and equiprime. 
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Proposition 2.5. Let N be a left permutable near-ring and NP  be 

such that ( ).2 PPorPNP =⊆  Then P is 3-prime if and only if P is 

completely prime. 

Proof. Assume N is left permutable, Pxy ∈  and P is a 3-prime ideal 
such that .PNP ⊆  Then .PxNyNxy ⊆=  Thus P is completely prime 

(If ,2 PP =  then for every Nn ∈  and for every ==∈ 21, pnpnpPp  

,21 Pnpp ∈  i.e., PNP ⊆ ). 

Theorem 2.6. Let N be a left permutable near-ring and let P be a 
proper ideal of N. If P is completely prime, then it is equiprime. 

Proof. For ,,, Nyxa ∈  assume Panyanx ∈−  for all .Nn ∈  Since 

N is left permutable, then .Pnaynax ∈−  Let .PNq −∈  Then 
( ) ( ) .Paqnynxnyaqnxaqnayqnaxqqnaynax ∈−=−=−=−  Since N 

is completely prime and ,Pq ∈/  then ( ) .Panynx ∈−  Now either 

Pnynx ∈−  or .Pa ∈  If ,Pnynx ∈−  then ( ) =−=− nyqnxqqnynx  

( ) .Pnqyxynqxnq ∈−=−  Then ( ) .PNqyx ⊆−  Since P is also 3-prime 

and ,Pq ∈/  then .Pyx ∈−  Thus P is equiprime.  

Corollary 2.7. Let N be a left permutable near-ring and let P be a 

proper ideal of N such that ( ).2 PPorPNP =⊆  Then P is 3-prime if 

and only if P is equiprime. 

Proof. It is seen from Proposition 2.5 and Theorem 2.6.  

Proposition 2.8. Let N be a permutable near-ring and .NP  Then 
P is 3-prime if and only if P is equiprime. 

Proof. For ,,, Nyxa ∈  assume Panyanx ∈−  for all .Nn ∈  Since 

N is permutable, then −=−=−=− xnayanxanaynaxnanyanx  
( ) .Pnayxyna ∈−= So ( ) .PNayx ⊆−  Then either Pyx ∈−  or 

.Pa ∈  Thus P is equiprime, the converse is straightforward.  
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Proposition 2.9 ([6, Proposition 2.7]). Let N be a medial near-ring 
and .NP  Then P is 3-prime if and only if P is completely prime. 

Theorem 2.10. Let N be a medial near-ring and NP  be such that 
.0\ /≠PNd  If P is completely prime, then it is equiprime. 

Proof. For ,,, NyxPNa ∈−∈  assume Panyanx ∈−  for all 

.Nn ∈  Let .PNn dd −∈  Since N is medial and PPNd ⊆  by Lemma 

2.1, then .Pnaynnaxnanynanxn dddd ∈−=−  Then, −ddnaxnn  

( ) .Pannynnxnnyannnxannnaynn ddddddddd ∈−=−=  Since P is 

completely prime and ,Pand ∈/  then .Pnynnxn dd ∈−  Then −ddnxnn  

( ) .Pnnyxnynnnxnnnnynn dddddddd ∈−=−=  Then ( )yxnd − dNn  

.P⊆  Since P is completely prime and ,Pnd ∈/  then .Pyx ∈−  

Therefore P is equiprime.  

Corollary 2.11. Let N be a medial near-ring and NP  be such that 
.0\ /≠PNd  Then P is 3-prime if and only if P is equiprime. 

Proof. The proof is seen from Propositin 2.9 and Theorem 2.10. 

( )Niβ  will denote the intersections of all i-prime ideals of N for 

.completely,equi,3 === cei  For more details on the prime radicals 

( ),Niβ  the following papers: [2] and [9] are recommended. We have the 

following: 

Corollary 2.12. Let N be a zero-symmetric near-ring. If ( )Ncβ  is a 

0-prime ideal of N, then 

(a) If N is a right permutable (or medial) near-ring and there exists a 
completely prime ideal P of N such that ,0\ /≠PNd  then ( ) ce N β⊆β  

( ) ( ).3 NN β=  

(b) If N is a left permutable near-ring and PN ≠  is a completely 
prime ideal of N, then ( ) ( ) ( ).3 NNN ce β=β⊆β  

(c) If N is a permutable near-ring, then ( ) ( ) ( ).3 NNN ce β=β=β  
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Proof. (a) It is easily seen that ( )Ncβ  is a completely semi-prime 

ideal of N. Under assumptions ( )Ncβ  is a 0-prime ideal of N, then ( )Ncβ  

is a completely prime ideal of N from [9]. Since P is a completely prime 
ideal of N such that 0\ /≠PNd  and ( ) ,PNc ⊆β  then ( ) .0\ /≠β NN cd  

Hence ( )Ncβ  is an equiprime ideal of N from Theorem 2.3 (for medial, 

from Theorem 2.10). Therefore ( ) ( ) ( ) ( )NNNN cce 3. β=ββ⊆β  comes 

from Proposition 2.2 (for medial, from Proposition 2.9). 

(b) ( )Ncβ  is a completely prime ideal of N by the proof of (a). Since 

PN ≠  is a completely prime ideal of N and ( ) ,PNc ⊆β  then 

( ) .NNc ≠β  Hence ( )Ncβ  is an equiprime ideal of N from Theorem 2.6, 

i.e., ( ) ( ).NN ce β⊆β  Since N is a zero-symmetric near-ring, then 

( ) ( ).NNN cc β⊆β  Therefore ( ) ( )NNc 3β=β  by Proposition 2.5. 

(c) ( )Ncβ  is a completely prime ideal of N by the proof of (a). Hence 

the result follows from Proposition 2.8. 

3. Insertion Factors, LSD  and RSD  Near-Rings 

In a near-ring N, an element Nx ∈  is called an insertion factor in N 
if for every ., axbabNba =∈  Throughout this section, I  denotes the 
set of all insertion factors in N. Every constant near-ring is an example of 

.N=I  

If ,Nn ∈  the annihilator of n is ( ) { }.0::0 =∈= xnNxn  

Lemma 3.1. Let N be a near-ring. 

(i) If ( ) 0:0 =n  for all n in an RSD  near-ring N, then .N=I  

(ii) If ,N=I  then N is both RSD  and .LSD  

(iii) If N is ,RSD  then N has strong IFP  property [4, Lemma 2.8]. 

(iv) If N is RSD  and simple, then .N=I  

(v) If N is RSD  and simple, then N is .LSD  
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(vi) Let N=I  and .NP  Then P is 3-prime if and only if P is 
completely prime. 

Proof. (i) Assume N is RSD  and for every ( ) .0:0 =∈ nNn  Then 

for every .,,, axbxabxNxba =∈  Then ( ) .0:0 =∈− xaxbab  Hence 

.N=I  

(ii) Suppose that .N=I  Then for every .,, acbabNcba =∈  

Hence ,acbcabc =  i.e., N is .RSD  Similarly N is .LSD  

(iv) If N is RSD  and simple, then either ( ) 0:0 =n  or ( ) Nn =:0  

for all Nn ∈  as a result of (iii). If for all ( ) NnNn ==∈ I,0:0  by (i). 

If for all ( ) ,:0 NnNn =∈  then anbab == 0  for all .,, Nnba ∈  

Hence .N=I  

(v) From (iv) and (ii). 

(vi) Assume PxyN ∈= ,I  and P is a 3-prime ideal. Then xnyxy =  

P∈  for every .Nn ∈  So .PxNy ⊆  Thus P is completely prime. The 
converse is straightforward.  

Theorem 3.2. Let N=I  and P an ideal of N such that 
.0\ /≠PNd Then P is 3-prime if and only if P is equiprime. 

Proof. Assume P is a completely prime ideal of N and for −∈ Na  
PanyanxNyxP ∈−∈,,  for every .Nn ∈  Since PPNd ⊆  by 

Lemma 2.1., then for .PanynanxnPNn dddd ∈−−∈  Since ,NP  

.Panynnanxnn dddd ∈−  Since ,N=I  then =− dddd anynnanxnn  

.Pyanynnxanxnn dddd ∈−  By Lemma 3.1 (ii), N is ,LSD  then  

( ) ( ) dd nanxxnanx =  and ( ) ( ) .dd nanyynany =  Then −ddanxnn anynd  

dn ( ) .Pannyxnannnxannnyanynnxanxnn dddddddddd ∈−=−=−=  

So ( ) .PaNnyxn dd ⊆−  Since P is completely prime and ,, Pna d ∈/  then 

.Pyx ∈−  Thus P is equiprime. The remain of the proof is seen from 
Lemma 3.1 (vi). 
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